129 research outputs found

    Copy number variation in bipolar disorder

    Get PDF
    This study has provided one of the first glimpses of the possible involvement of copy number variation in the susceptibility to bipolar disorder.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Copy number variation in bipolar disorder.

    Get PDF
    This study has provided one of the first glimpses of the possible involvement of copy number variation in the susceptibility to bipolar disorder

    Benefits and challenges of rare genetic variation in Alzheimer's disease

    Get PDF
    Purpose of Review It is well established that sporadic Alzheimer’s disease (AD) is polygenic with common and rare genetic variation alongside environmental factors contributing to disease. Here, we review our current understanding of the genetic architecture of disease, paying specific attention to rare susceptibility variants, and explore some of the limitations in rare variant detection and analysis. Recent Findings Rare variation has been shown to robustly associate with disease. These include potentially damaging and loss of function mutations that are easily modelled in silico, in vitro and in vivo, and represent potentially druggable targets. A number of risk genes, including TREM2, SORL1 and ABCA7 show multiple independent associations suggesting that they may influence disease via multiple mechanisms. With transcriptional regulation, inflammatory response and modification of protein production suggested to be of primary importance. Summary We are at the beginning of our journey of rare variant detection in AD. Whole exome sequencing has been the predominant technology of choice. While fruitful, this has introduced a number of challenges with regard to data integration. Ultimately the future of disease-associated rare variant identification lies in whole genome sequencing projects that will allow the testing of the full range of genomic variation

    Functional analyses of a novel splice variant in the CHD7 gene, found by next generation sequencing, Confirm Its pathogenicity in a Spanish patient and diagnose him with CHARGE syndrome

    Get PDF
    Mutations in CHD7 have been shown to be a major cause of CHARGE syndrome, which presents many symptoms and features common to other syndromes making its diagnosis difficult. Next generation sequencing (NGS) of a panel of intellectual disability related genes was performed in an adult patient without molecular diagnosis. A splice donor variant in CHD7 (c.5665 + 1G > T) was identified. To study its potential pathogenicity, exons and flanking intronic sequences were amplified from patient DNA and cloned into the pSAD® splicing vector. HeLa cells were transfected with this construct and a wild-type minigene and functional analysis were performed. The construct with the c.5665 + 1G > T variant produced an aberrant transcript with an insert of 63 nucleotides of intron 28 creating a premature termination codon (TAG) 25 nucleotides downstream. This would lead to the insertion of 8 new amino acids and therefore a truncated 1896 amino acid protein. As a result of this, the patient was diagnosed with CHARGE syndrome. Functional analyses underline their usefulness for studying the pathogenicity of variants found by NGS and therefore its application to accurately diagnose patients.This work was funded by Jesús de Gangoiti Barrera Foundation (FJGB15/005). The EAV laboratory is funded by projects of the Spanish Ministry of Economy and Competitiveness, National Plan for R & D 2013–2016, ISCIII (FIS: PI13/01749) co-financed by FEDER from Regional Development European Funds (European Union) and the project CSI090U14 of the Regional ministry of Education (ORDER EDU/122/2014) (Castilla y León, Spain). This study made use of data generated by the UK10K Project. Funding for the UK10K Project was provided by the Wellcome Trust under award WT091310.Peer reviewe

    Rare Genetic Variation in 135 Families With Family History Suggestive of X-Linked Intellectual Disability.

    Get PDF
    Families with multiple male children with intellectual disability (ID) are usually suspected of having disease due to a X-linked mode of inheritance and genetic studies focus on analysis of segregating variants in X-linked genes. However, the genetic cause of ID remains elusive in approximately 50% of affected individuals. Here, we report the analysis of next-generation sequencing data in 274 affected individuals from 135 families with a family history suggestive of X-linked ID. Genetic diagnoses were obtained for 19% (25/135) of the families, and 24% (33/135) had a variant of uncertain significance. In 12% of cases (16/135), the variants were not shared within the family, suggesting genetic heterogeneity and phenocopies are frequent. Of all the families with reportable variants (43%, 58/135), we observed that 55% (32/58) were in X-linked genes, but 38% (22/58) were in autosomal genes, while the remaining 7% (4/58) had multiple variants in genes with different modes on inheritance. This study highlights that in families with multiple affected males, X linkage should not be assumed, and both individuals should be considered, as different genetic etiologies are common in apparent familial cases

    Golgi apparatus, endoplasmic reticulum and mitochondrial function implicated in Alzheimer's disease through polygenic risk and RNA sequencing

    Get PDF
    Polygenic risk scores (PRS) have been widely adopted as a tool for measuring common variant liability and they have been shown to predict lifetime risk of Alzheimer’s disease (AD) development. However, the relationship between PRS and AD pathogenesis is largely unknown. To this end, we performed a differential gene-expression and associated disrupted biological pathway analyses of AD PRS vs. case/controls in human brain-derived cohort sample (cerebellum/temporal cortex; MayoRNAseq). The results highlighted already implicated mechanisms: immune and stress response, lipids, fatty acids and cholesterol metabolisms, endosome and cellular/neuronal death, being disrupted biological pathways in both case/controls and PRS, as well as previously less well characterised processes such as cellular structures, mitochondrial respiration and secretion. Despite heterogeneity in terms of differentially expressed genes in case/controls vs. PRS, there was a consensus of commonly disrupted biological mechanisms. Glia and microglia-related terms were also significantly disrupted, albeit not being the top disrupted Gene Ontology terms. GWAS implicated genes were significantly and in their majority, up-regulated in response to different PRS among the temporal cortex samples, suggesting potential common regulatory mechanisms. Tissue specificity in terms of disrupted biological pathways in temporal cortex vs. cerebellum was observed in relation to PRS, but limited tissue specificity when the datasets were analysed as case/controls. The largely common biological mechanisms between a case/control classification and in association with PRS suggests that PRS stratification can be used for studies where suitable case/control samples are not available or the selection of individuals with high and low PRS in clinical trials

    Rare copy number variants: a point of rarity in genetic risk for bipolar disorder and schizophrenia

    Get PDF
    Context: Recent studies suggest that copy number variation in the human genome is extensive and may play an important role in susceptibility to disease, including neuropsychiatric disorders such as schizophrenia and autism. The possible involvement of copy number variants (CNVs) in bipolar disorder has received little attention to date. Objectives: To determine whether large (>100 000 base pairs) and rare (found in <1% of the population) CNVs are associated with susceptibility to bipolar disorder and to compare with findings in schizophrenia. Design: A genome-wide survey of large, rare CNVs in a case-control sample using a high-density microarray. Setting: The Wellcome Trust Case Control Consortium. Participants: There were 1697 cases of bipolar disorder and 2806 nonpsychiatric controls. All participants were white UK residents. Main Outcome Measures: Overall load of CNVs and presence of rare CNVs. Results: The burden of CNVs in bipolar disorder was not increased compared with controls and was significantly less than in schizophrenia cases. The CNVs previously implicated in the etiology of schizophrenia were not more common in cases with bipolar disorder. Conclusions: Schizophrenia and bipolar disorder differ with respect to CNV burden in general and association with specific CNVs in particular. Our data are consistent with the possibility that possession of large, rare deletions may modify the phenotype in those at risk of psychosis: those possessing such events are more likely to be diagnosed as having schizophrenia, and those without them are more likely to be diagnosed as having bipolar disorder

    Identification and functional modelling of plausibly causative cis-regulatory variants in a highly-selected cohort with X-linked intellectual disability.

    Get PDF
    Identifying causative variants in cis-regulatory elements (CRE) in neurodevelopmental disorders has proven challenging. We have used in vivo functional analyses to categorize rigorously filtered CRE variants in a clinical cohort that is plausibly enriched for causative CRE mutations: 48 unrelated males with a family history consistent with X-linked intellectual disability (XLID) in whom no detectable cause could be identified in the coding regions of the X chromosome (chrX). Targeted sequencing of all chrX CRE identified six rare variants in five affected individuals that altered conserved bases in CRE targeting known XLID genes and segregated appropriately in families. Two of these variants, FMR1CRE and TENM1CRE, showed consistent site- and stage-specific differences of enhancer function in the developing zebrafish brain using dual-color fluorescent reporter assay. Mouse models were created for both variants. In male mice Fmr1CRE induced alterations in neurodevelopmental Fmr1 expression, olfactory behavior and neurophysiological indicators of FMRP function. The absence of another likely causative variant on whole genome sequencing further supported FMR1CRE as the likely basis of the XLID in this family. Tenm1CRE mice showed no phenotypic anomalies. Following the release of gnomAD 2.1, reanalysis showed that TENM1CRE exceeded the maximum plausible population frequency of a XLID causative allele. Assigning causative status to any ultra-rare CRE variant remains problematic and requires disease-relevant in vivo functional data from multiple sources. The sequential and bespoke nature of such analyses renders them time-consuming and challenging to scale for routine clinical use

    Genome wide significant locus for Research Diagnostic Criteria Schizoaffective Disorder Bipolar Type.

    Get PDF
    Studies have suggested that Research Diagnostic Criteria for Schizoaffective disorder Bipolar type (RDC-SABP) might identify a more genetically homogenous subgroup of bipolar disorder. Aiming to identify loci associated with RDC-SABP we have performed a replication study using independent RDC-SABP cases (n=144) and controls (n=6,559), focusing on the 10 loci that P-value <10-5 for RDC-SABP in the Wellcome Trust Case Control Consortium (WTCCC) bipolar disorder sample using ‘researcher-specific SNPs’ represented on the custom array, the ImmunoChip. Combining the WTCCC and replication datasets by meta-analysis (combined RDC-SABP, n=423, Controls, n=9,494) we observed genome wide significance association at one SNP, rs2352974, located within the intron of the gene TRAIP on chromosome 3p21.31. This locus did not reach genome wide significance in bipolar disorder or schizophrenia large psychiatric genomic consortium datasets, suggesting that it may be a relatively specific genetic risk for the bipolar subtype of schizoaffective disorder
    • …
    corecore